ANALYSIS OF
FATAL ACCIDENTS

ANALYSIS OF
FATAL ACCIDENTS

ANALYSIS OF
FATAL ACCIDENTS

This data was in the oldest excel format possible…

2023

2023

2023

library(tidyverse)

clean_csv <- function(file_path) {
  #input MUST be a string including the "/folder/file.csv" path
  df_header <- read_csv(file_path, skip = 5, n_max = 3)
  
  #Slice, then bring names together using `_` separator
  header_names <- paste(as.character(slice(df_header, 1)), as.character(slice(df_header, 2)), 
                        as.character(slice(df_header, 3)), sep = "_")
  
  #clean the column names
  header_names <- header_names %>% 
    str_replace_all(pattern = " ", replacement = "_") %>% 
    str_remove(pattern = "NA\\_NA|^NA\\_|\\_NA$") %>% 
    str_replace_all(pattern = "\\.|\\,", replacement = "") %>% 
    str_remove(pattern = "_$")
  
  #Rename first column to `Year`
  header_names[1] <- "Year"
  
  #read in data with cleaned names
  tbl <- read_csv(file_path, skip = 9, col_names = header_names, n_max = 11)
  
  #remove unnecessary columns
  tbl[,-length(tbl)]
  
  return(tbl)
}




# This function cleans all the DATE files' headers
clean_date <- function(file_path) {
  #input MUST be a string including the "/folder/file.csv" path
  df_header <- read_csv(file_path, skip = 5, n_max = 3)
  
  #Slice, then bring names together using `_` separator
  header_names <- paste(as.character(slice(df_header, 2)), as.character(slice(df_header, 3)), sep = "_")
  
  #clean the column names
  header_names <- header_names %>% 
    str_replace_all(pattern = " ", replacement = "_") %>% 
    str_remove_all(pattern = "NA\\_NA|^NA\\_|\\_NA$") %>% 
    str_replace_all(pattern = "\\.|\\,", replacement = "") %>% 
    str_remove(pattern = "_$")
  
  #Rename first column to `Year`
  header_names[1] <- "Year"
  
  #read in data with cleaned names
  tbl <- read_csv(file_path, skip = 9, col_names = header_names, n_max = 11)
  
  #remove unnecessary columns
  #tbl <- tbl[,-length(tbl)]
  
  return(tbl)
}
library(tidyverse)

clean_csv <- function(file_path) {
  #input MUST be a string including the "/folder/file.csv" path
  df_header <- read_csv(file_path, skip = 5, n_max = 3)
  
  #Slice, then bring names together using `_` separator
  header_names <- paste(as.character(slice(df_header, 1)), as.character(slice(df_header, 2)), 
                        as.character(slice(df_header, 3)), sep = "_")
  
  #clean the column names
  header_names <- header_names %>% 
    str_replace_all(pattern = " ", replacement = "_") %>% 
    str_remove(pattern = "NA\\_NA|^NA\\_|\\_NA$") %>% 
    str_replace_all(pattern = "\\.|\\,", replacement = "") %>% 
    str_remove(pattern = "_$")
  
  #Rename first column to `Year`
  header_names[1] <- "Year"
  
  #read in data with cleaned names
  tbl <- read_csv(file_path, skip = 9, col_names = header_names, n_max = 11)
  
  #remove unnecessary columns
  tbl[,-length(tbl)]
  
  return(tbl)
}




# This function cleans all the DATE files' headers
clean_date <- function(file_path) {
  #input MUST be a string including the "/folder/file.csv" path
  df_header <- read_csv(file_path, skip = 5, n_max = 3)
  
  #Slice, then bring names together using `_` separator
  header_names <- paste(as.character(slice(df_header, 2)), as.character(slice(df_header, 3)), sep = "_")
  
  #clean the column names
  header_names <- header_names %>% 
    str_replace_all(pattern = " ", replacement = "_") %>% 
    str_remove_all(pattern = "NA\\_NA|^NA\\_|\\_NA$") %>% 
    str_replace_all(pattern = "\\.|\\,", replacement = "") %>% 
    str_remove(pattern = "_$")
  
  #Rename first column to `Year`
  header_names[1] <- "Year"
  
  #read in data with cleaned names
  tbl <- read_csv(file_path, skip = 9, col_names = header_names, n_max = 11)
  
  #remove unnecessary columns
  #tbl <- tbl[,-length(tbl)]
  
  return(tbl)
}
library(tidyverse)

clean_csv <- function(file_path) {
  #input MUST be a string including the "/folder/file.csv" path
  df_header <- read_csv(file_path, skip = 5, n_max = 3)
  
  #Slice, then bring names together using `_` separator
  header_names <- paste(as.character(slice(df_header, 1)), as.character(slice(df_header, 2)), 
                        as.character(slice(df_header, 3)), sep = "_")
  
  #clean the column names
  header_names <- header_names %>% 
    str_replace_all(pattern = " ", replacement = "_") %>% 
    str_remove(pattern = "NA\\_NA|^NA\\_|\\_NA$") %>% 
    str_replace_all(pattern = "\\.|\\,", replacement = "") %>% 
    str_remove(pattern = "_$")
  
  #Rename first column to `Year`
  header_names[1] <- "Year"
  
  #read in data with cleaned names
  tbl <- read_csv(file_path, skip = 9, col_names = header_names, n_max = 11)
  
  #remove unnecessary columns
  tbl[,-length(tbl)]
  
  return(tbl)
}




# This function cleans all the DATE files' headers
clean_date <- function(file_path) {
  #input MUST be a string including the "/folder/file.csv" path
  df_header <- read_csv(file_path, skip = 5, n_max = 3)
  
  #Slice, then bring names together using `_` separator
  header_names <- paste(as.character(slice(df_header, 2)), as.character(slice(df_header, 3)), sep = "_")
  
  #clean the column names
  header_names <- header_names %>% 
    str_replace_all(pattern = " ", replacement = "_") %>% 
    str_remove_all(pattern = "NA\\_NA|^NA\\_|\\_NA$") %>% 
    str_replace_all(pattern = "\\.|\\,", replacement = "") %>% 
    str_remove(pattern = "_$")
  
  #Rename first column to `Year`
  header_names[1] <- "Year"
  
  #read in data with cleaned names
  tbl <- read_csv(file_path, skip = 9, col_names = header_names, n_max = 11)
  
  #remove unnecessary columns
  #tbl <- tbl[,-length(tbl)]
  
  return(tbl)
}

Importing the datasets was a mission. 🚀

2023

2023

2023

A function to wrangle regular expressions solved it!

A function to wrangle regular expressions solved it!

A function to wrangle regular expressions solved it!

2023

2023

2023

Overview

Sed ut perspiciatis unde omnis iste natus error sit voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit.

Approach

Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat. Nihil molestiae consequatur, vel illum qui dolorem eum. Architecto beatae vitae dicta sunt explicabo.

Framer 2023

Amsterdam